OKEEE IN CONTROL OF OTERMY TIEND

MUSCLES OF FACIAL EXPRESSION

CN: Use your lightest colors for O and Q. Use warm and cheerful colors for the muscles producing a smile (A–H). Color the muscles reflecting sadness (I–O) with greens, blues, and grays. (1) Begin with the smiling side, and color only the muscles identified by titles A–H. Color those muscles

in the profile view below. (2) Repeat the process with the sad side. Note that a portion of frontalis (I) has been cut away to reveal corrugator supercilii (J). (3) Color the titles at the bottom and the related muscles on the lower view. Include the portions of the auricular muscles that disappear beneath the ear.

- ◆ ORBIGULARIS OGULIA
- MASALIS:

LEVATOR LABII SUPERIORIS ALAEQUE NASI:

LEVATOR LABN SUPERIORISD

LEVATOR ANGULI ORIS:

- * ZYGOMATIGUS MAJOR f
- ZYGOWATICUS WIWOR:

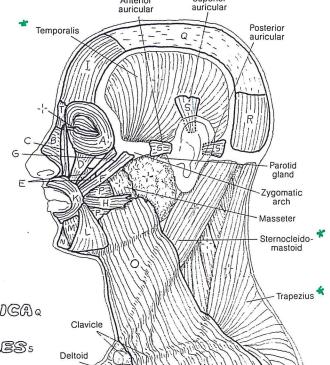
RISORIUS H

PRONTALIST
CORRUGATOR
SUPERCILID

ORBIGULARIS
ORISK

DEPRESSOR
ANGULI
ORISL

DEPRESSOR
LABIN
INFERIORISM
PLATYSMA.

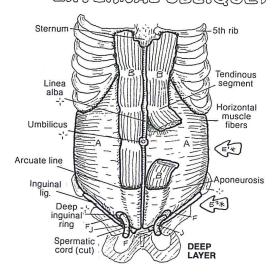

The muscles of facial expression are generally thin, flat bands arising from a facial bone or cartilage and inserting into the dermis of the skin or the fibrous tissue enveloping the sphincter muscles of the orbit or mouth. These muscles are generally arranged into the following regional groups: (1) the epicranial group (occipitofrontalis moving the scalp); (2) the orbital group (orbicularis oculi, corrugator supercilii); (3) the nasal group (nasalis, procerus); (4) the oral group (orbicularis oris, zygomaticus major and minor, the levators and the depressors of the lips and angles of the mouth, risorius, buccinator, and part of platysma); and (5) the group moving the ears (auricular muscles). The general function of each of these muscles is to move the skin wherever they insert. As you color each muscle, try contracting it on yourself while looking into a mirror, and see what develops.

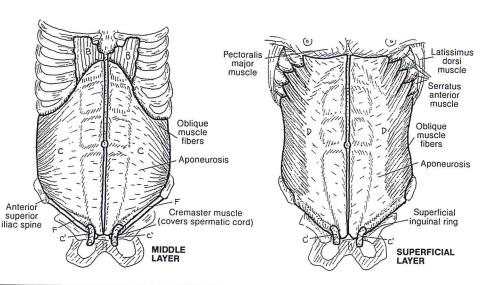
Orbicularis oculi and oris are sphincter muscles, tending to close the skin over the eyelids and tighten the lips, respectively. Contractions of the cheek muscle buccinator makes possible rapid changes in volume of the oral cavity, as in playing a trumpet or squirting water. The nasalis muscle has both compressor and dilator parts, which influence the size of the anterior nasal openings.

* BUCCINATOR: GALEA APONEUROTICA.

* OCCIPITALISA AURICULAR MUSCLESS PROCERUST

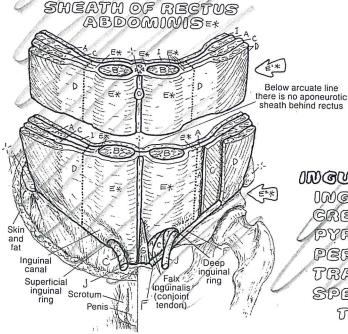
Pectoralis


MUSCLES OF ANTERIOR ABDOMINAL WALL & INGUINAL REGION


CN: Use a dark color for J and bright ones for B and I. (1) Color the 3 layers of the abdominal wall. (2) Color the sheath of the rectus abdominis in the lower left illustration gray. Color the two locator arrows gray in this and the upper illustration. (3) Beginning with J and K, and followed by H, color the coverings of the spermatic cord.

ANTERIOR ABDOMINAL WALL:

TRANSVERSUS ABDOMINISA RECTUS ABDOMINISA INTERNAL OBLIQUE EXTERNAL OBLIQUE The anterior abdominal wall consists of three layers of flat muscles, the tendons (aponeuroses) of which interlace in the midline, and a vertically oriented pair of segmented muscles that are ensheathed incompletely by the aponeuroses of the three flat muscles (sheath of the rectus abdominis). The flat muscles arise from the lateral aspect of the torso (inguinal ligament, iliac crest, thoracolumbar fascia, lower cosial cartilages, ribs). The lowest fibers of external oblique roll inwardly to form the inguinal ligament. These three muscles act to compress the abdominal contents during expiration, urination, and defecation. They assist in maintaining pressure on the curve of the low back, resisting "sway back" (excess lumbar lordosis) and extension of the low back.


CN: color upper half

Each segmented rectus abdominis muscle arises from the pubic crest and tubercles and inserts on the lower costal cartilages and xiphoid process (sternum). They are flexors of the vertebral column. The sheath of the rectus varies in its extent, running from deep to superficial from below upward, as illustrated. Below the arcuate line, no muscle contributes to its posterior layer (E²⁺); in the middle, all three flat aponeuroses contribute equally to the sheath (E¹⁺); above, the anterior sheath is formed from external oblique; posteriorly, the rectus contacts the costal cartilages.

The inguinal region is the lower medial part of the abdominal wall, characterized by a canal with inner (deep) and outer (superficial) openings or rings. This canal carries the *spermatic cord* (ductus deferens and its vessels, testicular vessels, lymphatics) in the male and the round ligament of the uterus in the female. The testes and spermatic cords "descend" (by differential growth) into outpocketings of the anterior abdominal wall, collectively called the scrotum. In their descent, they push in front of them layers of fibers from the three flat muscles of the abdominal wall and their aponeuroses, much as a finger might push against four layers of latex to form a four-layered finger glove. These are the coverings of the cord: internal, cremasteric, and external spermatic fasciae. The lower fibers of internal oblique are unique in that they continue in loops around the spermatic cord as the cremaster muscle; the two are connected by cremasteric fascia. The canal area is a weak point, subject to protrusions of fat or intestine (hernias) from within the abdominal cavity, either directly through the wall (direct inguinal hernia) or indirectly through the canal (indirect inguinal hernia).

INGUINAL REGION:
INGUINAL LIG.F
GREMASTER MUS.C
PYRAMIDALIS MUS.C
PERITONEUMH

TRANSVERSALIS FASCIAI SPERMATIC CORDI TESTIS/EPIDIDYMISK

ord vessels,

Epididymis

Skin and fat of scrotum

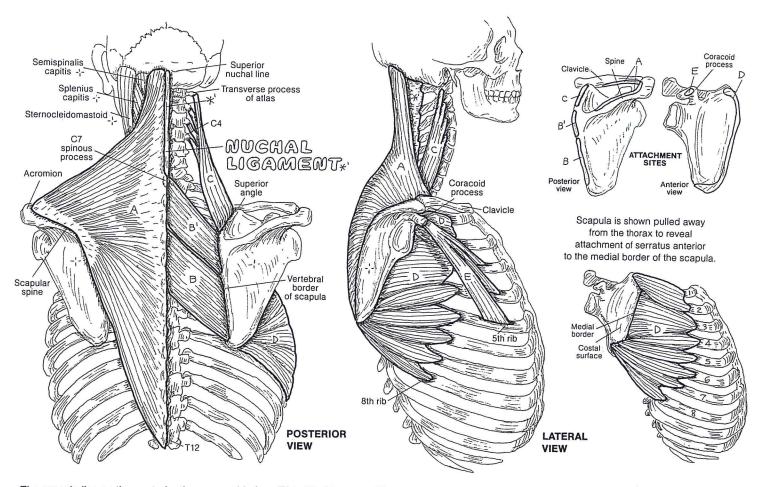
Skin of abdominal wall

Internal spermatic fascia

> Cremasteric fascia

COVERINGS

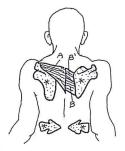
CORD


External spermatic fascia

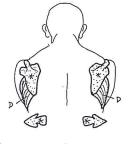
Superficial

MUSCLES OF SCAPULAR STABILIZATION

TRAPEZIUSA RHOMBOID MAJOR₅ 7 MINOR₅ LEVATOR SCAPULACE. SERRATUS AMTERIOR. PECTORALIS MINORE


CN: (1) Color the six muscles of scapular stabilization. Note that the two rhomboids receive the same color (B). In the two main views, color gray the nuchal ligament and its title. (2) Color the attachment site diagrams at upper right. (3) In the illustrations below describing scapular movement, note that the three regions of trapezius (A) play different roles. Color gray the scapulae, the arrows, and the movement titles.

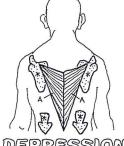
The scapula lies on the posterior thorax, roughly from T2 to T8. It has no direct bony attachment with the axial skeleton. Enveloped by muscle, it glides over the fascia-covered thorax during upper limb movement (scapulothoracic motion). Bursae have been reported between the thorax and the scapula; so has bursitis. The scapula is dynamically moored to the axial skeleton by muscles attaching the scapula to the axial skeleton. These muscles of scapular stabilization make possible considerable scapular mobility and, therefore, shoulder/arm mobility.


Note the roles of these six muscles in scapular movement, and note how the shoulder and arm are affected. Pectoralis minor assists serratus anterior in protraction of the scapula such as in pushing against a wall; it also helps in depression of the shoulder and downward rotation of the scapula. Consider the power resident in serratus anterior and trapezius in pushing or swinging a bat. Note the especially broad sites of attachment of the trapezius muscle. Trapezius commonly manifests significant tension with hard workmental or physical. A brief massage of this muscle often brings quick relief.

MOVEMENTS OF THE SCAPULA.

RETRACTION:

Military posture ("squaring the shoulders")


PROTRACTION,

Pushing forward with outstretched arms and hands.

ELE*V*ATIOM,

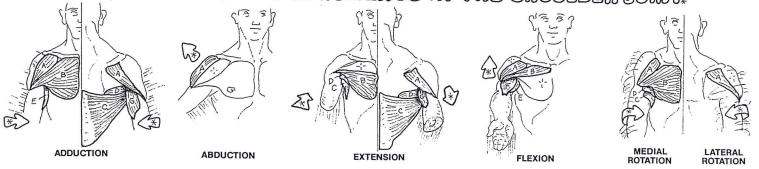
Shrugging the shoulders or protecting the head.

MOISESSACIED

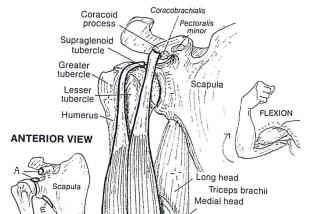
Straight arms on parallel bars, holding weight.

MPWARD ROT:

Lifting or reaching over head.


MOVERS OF SHOULDER JOINT

DELTOIDA PECTORALIS MAJOR:
LATISSIMUS DORSI: TERES MAJOR;
CORACOBRACHIALIS: BICEPS BRACHII;
TRICEPS BRACHII (LONG MEAD):


CN: (1) Begin with both posterior views; note that the biceps and triceps are not shown on the lateral view.
(2) When coloring the muscles below, note the actions of different parts of the deltoid (A) and pectoralis major (B).

MOVEMENTS OF THE HUMERUS AT THE SHOULDER JOINT.

MOVERS OF ELBOW & RADIOULWAR JOINTS

(cut)

Interosseous ligament

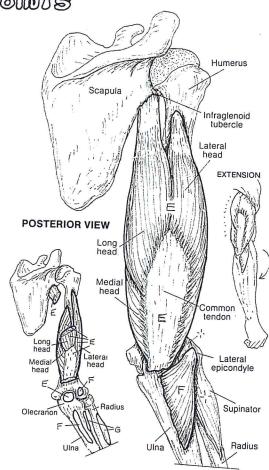
Short

Radial

D.

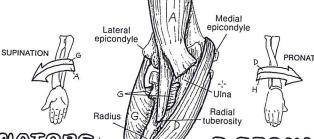
Radius

Styloid


CN: Use the same colors for biceps brachii (A) and triceps brachii (E) as you did for those muscles on Plate 56. (1) Color the four flexors and their attachment sites on the drawings to their left. Do the same for the extensors on the right. (2) Color the supinators and pronators below. the arrows demonstrating their actions, and their attachment sites at upper left.

4 FLEXORS.

BIGEPS BRACKIIA BRACHIALIS: BRACHIORADIALIS. PROMATOR TERES,


Medial epicondyle

The principal flexors of the elbow joint are brachialis and biceps brachii, of which the former has the best mechanical advantage. Yet it's the bulge of a contracted biceps that gets all the visual attention! The tendon of biceps inserts at the tuberosity of the radius, making the muscle a supinator of the forearm as well. With the limb supinated, the biceps works to fulfill flexion of the elbow and supination of the elbow. Take away the supinating function (flexing the pronated elbow), and the appearance of biceps is disappointing (in most of us!). Note the additional attachment of the bicipital aponeurosis into the deep fascia of the common flexor group (not shown) in the forearm. Brachioradialis is active in flexion of the elbow and in rapid extension where it counters the centrifugal force produced by that movement. Pronator teres assists in elbow flexion as well as pronation.

2 Extensors TRICEPS BRACHII. ANCOMENS.

The principal extensor of the elbow joint is the three-headed triceps brachii with its massive tendon of insertion. The smaller anconeus assists in this function. Triceps is a powerful antagonist to the elbow flexors.

ligament

2 SUPIMATORS: BICEPS BRACKIIA

SUPIMATOR

Interosseous Biceps brachii is the more powerful supinator of the elbow, but supinator is important in maintaining supination. Supinator arises from the lateral aspect of the elbow, passing obliquely downward and forward to a rather broad insertion on the upper lateral and anterior surface of the radius. A bundle of fibers from the upper lateral ulna passes behind the radius to join the lateral fibers of supinator.

2 PROMATORS

PROMATOR TERES, PRONATOR QUADRATUSi

Pronator quadratus is the principal pronator of the elbow joint, superior in its mechanical advantage to pronator teres. Pronating the forearm (palm down) involves medial rotation of the radius. Since only the radius can rotate in the forearm, the pronators clearly cross the radius on the anterior side of the forearm, and their origin is ulnar.

ANTERIOR VIEW